CSS

Showing posts with label metabook. Show all posts
Showing posts with label metabook. Show all posts

Monday, February 6, 2012

(Ramblings on) Writing Notes on Quantum Field Theory

So, in the long run, my aim is to write great notes on quantum field theory and quantum gravity. Since quantum gravity depends on quantum field theory, it makes sense to begin there!

For those uninterested in my rambling thought process, here's the punch line: just as integrals and derivatives are first covered symbolically in calculus, then rigorously in analysis...we likewise believe that a naive and symbolic approach first ought to be covered, then a rigorous and axiomatic approach second.

Greiner and Reinhardt's Field Quantization provides a good level for detail, at least for the naive/symbolic treatment of field theory.

What Other People Do

The basic approach other books take is "Well, here's Feynman diagrams. Quantum Field Theory just plays with these...here's how you get Feynman rules...and here's renormalization, the end."

This is not terrible. But it is lacking a certain je ne sais quoi.

So instead, perhaps I should look at it from the mathematical perspective. This has its own problems.

Depends on...

The problem I have is with dependencies! It doesn't make sense to write about quantum field theory without first writing about classical field theory, quantum mechanics, and a bit about functional analysis.

I have written a note about Relativistic Quantum Mechanics [pdf] (which may make more sense after reading my notes on Lie Groups, Lie Algebras, and their Representations [pdf]).

However, there is still more to do with quantum mechanics. Particularly, the subject of scattering theory is lacking. (Erik Koelink has some great Lecture Notes [tudelft.nl] too)

Despite my notes on Functional Techniques in Path Integral Quantization [pdf], I still feel lacking in the "path integral" department.

Perhaps I should write notes on measure theory, functional analysis, then tackle Glimm and Jaffe's Quantum physics: a functional integral point of view?

With classical field theory, the subject quickly becomes a can of worms (sadly enough).

Gauge theory, as Derek Wise notes in his blog post "The geometric role of symmetry breaking in gravity", is intimately connected to Cartan Geometry.

There are dozens of exercises/examples to consider in gauge theory: Yang-Mills Theory, Born-Infield Action, Non-linear Sigma-Model, Non-linear Electrodynamics, Chern-Simons Theory, etc.

What Outline

So far, I've been considering my obstacles...but what about an outline?

The model I am following is the treatment of integration and differentiation in mathematics. First we have the naive symbolic manipulations (as done in calculus), then later we have the formal and rigorous proof based approach (as done in analysis).

Perhaps we should begin with naive field theory, where we obtain classical field theory "naively" from a "many body" problem.

This has merit from modelling fields as densities on the intuitive level.

Canonical quantization of this scheme becomes a triviality.

The problem with this approach is: what about the treatment of gauge theories, and their quantization?

After a few miracles, I expect to end up working with path integral quantization and formal calculus.

Naive treatment on quantizing gauge systems ought to be considered a bit more closely...

So that concludes the "naive" approach, and we begin the Axiomatic Approach. We should clarify the term "Axiom" means specification (not "God given truth", as dictionaries insist!).

The axiomatic approach would be done in a "guess-and-check" manner, modifying the axioms as necessary.

We naturally begin with Wightman axioms for the canonical approach, and the Osterwalder-Schrader axioms for the path integral approach. (Quickly, we ought to prove these two are equivalent!)

Kac's Vertex Algebras for Beginners takes the Wightman axioms, then extends them to conformal field theory through some magic. Perhaps this would be a worth-while example to consider?

Friday, December 16, 2011

Math to think about

There are several interesting directions I'd like to investigate. So interesting, I have decided to let you in on it too!

Moonshine

No living man cannot deny interest in moonshine. Terry Gannon's "Monstrous moonshine and the classification of CFT" (arXiv:math/9906167) provides a great review.

The basic idea is that we have a way to associate to "algebraic stuff" (e.g., groups) some "modular stuff".

What's great is, the word "stuff" is used in the technical sense of the word.

This would require reviewing group theory, finite groups, as well as some ring theory (for the "algebraic stuff"). To discuss "modular stuff", we'd need to review complex analysis, functional analysis. The connection here would require studying conformal field theory, to some degree.

Robert Wilson's Finite Simple Groups is a wonderful reference for finite simple groups; and as always SPLAG is a good reference too.

Noncommutative Geometry

People mean many things by "Noncommutative Geometry", here I mean Connes' approach.

I suppose this first requires us to consider what "commutative geometry" is!

This requires knowledge of commutative algebra and differential Geometry. The idea is to model "differential calculus over a commutative ring" (as Wikipedia calls it), i.e., consider the algebraic "grammar" underlying differential geometry.

Commutative algebra describes this algebraic "grammar". Studying this model in commutative algebra is precisely what I mean by "commutative geometry" (where projective modules correspond to vector bundles, and so on).

Noncommutative geometry, on the other hand, generalizes this model to the noncommutative setting!

I still need to write up my notes on differential geometry, but there are no good references for "commutative geometry"! There are a few books on commutative algebra, though...

I should type up my notes on algebraic topology too, since spin bundles are a "principal Spin bundle". Although I have some notes written on the Spin group (see my Lie groups notes), I should review it some more. Michelson and Lawson's Spin Geometry is a wonderful book to consider...

Operator algebras need to be reviewed for considering spectral triples. The algebra we typically work with are von Neumann algebras which are related to C* algebras.

Some references for operator algebras:

  1. Kadison and Ringrose, Fundamentals of the theory of operator algebras vol. I and II
  2. Blackadar. Operator Algebras: Theory of C*-Algebras and von Neumann Algebras. Encyclopaedia of Mathematical Sciences. Springer-Verlag, 2005.
  3. Yasuyuki Kawahigashi, "Conformal Field Theory and Operator Algebras" arXiv:0704.0097 (18 pages)
  4. Meghna Mittal, Vern Paulsen, "Operator Algebras of Functions." arXiv:0907.5184
  5. John M. Erdman Lecture Notes on Operator Algebras (129 pages)
  6. J. A. Erdos, C*-Algebras (51 pages).
  7. N.P. Landsman, "Lecture notes on C*-algebras, Hilbert C*-modules, and quantum mechanics" arXiv:math-ph/9807030 (89 pages).
  8. Jacob Lurie's Course Notes on Von Neumann Algebras, quite comprehensive!
  9. Wassermann, Operators on Hilbert space [ps] (70 pages)
  10. VFR Jones, von Neumann algebras [pdf] (150 pages)
  11. NP Landsman's Lecture Notes on Operator Algebras [pdf] (64 pages).
  12. John Hunter and Bruno Nachtergaele, Applied Analysis (free, legal ebook!)

And, of course, there is Connes' Noncommutative Geometry [pdf], as well as Connes and Marcolli's Noncommutative Geometry, Quantum Fields and Motives [pdf]

Tuesday, November 1, 2011

Quantifiers

I have been thinking about quantifiers, and the notation around them...since most books use differing notation that is not easy to read.

Since I am trying to be consistent throughout all of mathematics, it seems natural to suggest that the colon ":" should be read as "such that".

In this case, one should write "∃x : P(x)" since one usually writes in natural language "There is some x such that P(x)".

Likewise we often find expressions "If xX, then P(x)"...so it would be natural to use the notation "∀x∈X, P(x)" or "∀ x, x∈X and P(x)". After all, "x∈ X" is really a predicate "isIn(x,X)"...

I'm currently revising my notes on logic in Fascicles 0 of my Elements of Mathematics, which is why I bring this notational problem up! Hopefully, I will be done with revising and improving my logic chapter soon.

Monday, July 12, 2010

Future Directions

It is kind of open what I am going to do with this notebook/blog. I don't really know myself. Personally, I prefer TeX as my markup language as opposed to html, which is why I don't write as much as I should.

(Rant: TeX is just so much more convenient! It actually allows me to change notation with the flip of the wrist! For example, consider \let\propersubset=\subsetneq, then I simply use A\propersubset B and if I hate the notation...well, one line of code changed! With html, I have to change everything by hand. Or counters...html has no counter macros, grr...)

It would be nice to "categorify" Bourbaki's work. Take that with a grain of salt! What I mean by this is to be as comprehensive as Bourbaki (I'm reading through his Algebra right now), presenting definitions as e.g. a group object instead of a group, a magma object instead of a magma, etc.

That is to say, present the same material "internalized" in an arbitrary category. So for an example of this, consider the following definition:

Definition 1. A Magma Object consists of an object M in a monoidal category C equipped with a morphism μ:M⊗M→M.

I must confess that such an endeavor is appealing to me, but I might do it in LaTeX (taking advantage of its flexibility).

Short Summary

I think I will probably end up writing up a cohesive collection of notes — in the spirit of Bourbaki — that is self contained covering all of mathematics (from Set Theory and Category Theory foundations to...whatever!). However, I think I'll TeX it up, and post it online.

(As an aside, there is an interesting project called LuaTeX (there is also LuaLaTeX). There is no memory limits for it, and it has embedded Lua code. Perhaps it would be interesting to use this when writing notes involving numerical calculations?)